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Background
• Electromagnetic and electrical stimulation can modulate neural

activity in the sensorimotor system.
• Stimulation of the brain and spinal cord causes muscles to

produce motor-evoked potentials (MEPs).
• The recruitment curve illustrates the relationship between

stimulation intensity and MEP size.
Problem: Sparse data due to experimental constraints poses a chal-
lenge for accurately estimating curves and their key parameters in-
cluding threshold, S50, slope, and saturation.
Approach: A new hierarchical Bayesian framework is introduced.

Methods
Recruitment Curve Estimation
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Fig. 1. Hierarchical Bayesian estimation of recruitment curves. (a) Motor-evoked
potentials (MEPs). (b) Recruitment curves estimated using sigmoid function lack threshold
estimate. (c) Estimated using new rectified-logistic function within a hierarchical framework.
Shading represents 95% highest density intervals (HDI).

Synthetic Data Generation
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Fig. 2. Hierarchical model simulates high-fidelity synthetic TMS data. (a) Example
participant from human TMS data. (b) Hierarchical model can replicate observed participant. (c)
Example synthetic participant simulated conditioned on estimated population-level parameters for
model comparison. (d) Principal component analysis plot shows large overlap between simulated
data parameters (green) and parameters estimated from observed data (pink).
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Improved Accuracy Supersedes the t-test
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Fig. 3. (a–b) Standard hierarchical Bayesian model improves threshold estimation accuracy over non-Bayesian and non-hierarchical models on simulated data. (c–d) Bayesian estimation is
more powerful when detecting a shift in the threshold compared to frequentist testing.

Improved Curve Estimation

0 100 200
Stimulation intensity ( A)μ

0

1

2

A
U

C
 (

V
 ⋅ 

s)
μ

Rectified-linear

0 100 200

Logistic-4
(Boltzmann sigmoid)

0 100 200

Logistic-5

0 100 200

Rectified-logisticdcb

41600 47600 53600

Rectified-
logistic

Logistic-5

Logistic-4

Rectified-
linear

Rat SCS data
46,056 MEPs, 900 RCs

R
an

ki
n
g

W
or

st
 t

o 
be

st
 → ELPD

Pairwise ELPD difference
from best ranked model

26000 26350 26700
Predictive performance − Expected log-pointwise predictive density (ELPD, higher is better)

Rectified-
logistic

Logistic-5

Logistic-4

Rectified-
linear

Human TMS data
11,058 MEPs, 160 RCs

6350 6700 7050

Logistic-5

Rectified-
logistic

Logistic-4

Rectified-
linear

Human SCS data
4,600 MEPs, 104 RCs

a

e f g

10−2

10−1

100

Fig. 4. Cross-validation on real Spinal Cord Stimulation (SCS) and Transcranial Magnetic Stimulation (TMS) data. Rectified-logistic function outperforms conventional
logistic alternatives in predictive performance based on leave-one-out cross-validation [1], while having the unique advantage of estimating threshold, curvature and saturation.

Use Case: Detecting Change in Threshold
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Fig. 5. Comparison of midline versus lateral stimulation thresholds on human epidural SCS data. (a) Example participant with lateral (light) and midline (dark) stimulation.
Inset: zoom to show presence of threshold, despite small MEP size. (b) Difference between midline and lateral thresholds summarized by model across N = 13 participants suggests strong
evidence in favor of lateral stimulation resulting in lower thresholds and being more effective, a known effect [2].

Fewer Stimuli Needed
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Fig. 6. Efficient threshold estimation is performed by sampling data evenly without
repetitions. Example fits on simulated participant with total 64 equispaced stimuli and (a) eight
repetitions, (b) four repetitions, and (c) a single repetition per intensity. (d) Single repetition
produces lowest error for threshold estimation, regardless of the total number of stimuli. (e) For a
fixed total of 64 stimuli, fewer repetitions require fewer participants to achieve 80% power when
detecting shift in threshold from pre- to post-intervention phase.

Mixture Model for Outliers
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Fig. 7. Mixture model accounts for outliers and further improves predictive
performance on all datasets. (a) Example overestimated growth rate due to the presence of
outliers. (b) Mixture extension of the likelihood model is more robust to outliers. (c)
Leave-one-out cross-validation.

Conclusion
• Threshold estimation: Rectified-logistic function allows

estimation of motor threshold, which is independent of observed
saturation, as opposed to S50 estimated with logistic functions.

• Improved accuracy and power: Partial pooling within a
hierarchical framework provides more reliable and accurate
estimates, which also translates into increased statistical power
when detecting changes in threshold.

• Reduced experimental burden: The framework lowers
experimental burden by reducing the number of stimuli required
per participant while maintaining accuracy and simultaneously
increasing the number of muscles across which these insights are
obtained.

• Validation across different stimulation modalities: The
framework is validated across spinal cord stimulation (SCS) and
transcranial magnetic stimulation (TMS), highlighting its utility
in different experimental contexts.

• Future work: This method can extend into an adaptive
algorithm for efficient collection of data across multiple muscles
during live SCS and TMS experiments.
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