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more powerful when detecting a shift in the threshold compared to frequentist testing.
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Fig. 5. Comparison of midline versus lateral stimulation thresholds on human epidural SCS data. (a) Example participant with lateral (light) and midline (dark) stimulation.
Inset: zoom to show presence of threshold, despite small MEP size. (b) Difference between midline and lateral thresholds summarized by model across N = 13 participants suggests strong
evidence in favor of lateral stimulation resulting in lower thresholds and being more effective, a known effect [2].
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